Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MKD: a Multi-Task Knowledge Distillation Approach for Pretrained Language Models (1911.03588v2)

Published 9 Nov 2019 in cs.CL and cs.LG

Abstract: Pretrained LLMs have led to significant performance gains in many NLP tasks. However, the intensive computing resources to train such models remain an issue. Knowledge distillation alleviates this problem by learning a light-weight student model. So far the distillation approaches are all task-specific. In this paper, we explore knowledge distillation under the multi-task learning setting. The student is jointly distilled across different tasks. It acquires more general representation capacity through multi-tasking distillation and can be further fine-tuned to improve the model in the target domain. Unlike other BERT distillation methods which specifically designed for Transformer-based architectures, we provide a general learning framework. Our approach is model agnostic and can be easily applied on different future teacher model architectures. We evaluate our approach on a Transformer-based and LSTM based student model. Compared to a strong, similarly LSTM-based approach, we achieve better quality under the same computational constraints. Compared to the present state of the art, we reach comparable results with much faster inference speed.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.