Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Variance Reduced Stochastic Proximal Algorithm for AUC Maximization (1911.03548v2)

Published 8 Nov 2019 in stat.ML and cs.LG

Abstract: Stochastic Gradient Descent has been widely studied with classification accuracy as a performance measure. However, these stochastic algorithms cannot be directly used when non-decomposable pairwise performance measures are used such as Area under the ROC curve (AUC) which is a common performance metric when the classes are imbalanced. There have been several algorithms proposed for optimizing AUC as a performance metric, and one of the recent being a stochastic proximal gradient algorithm (SPAM). But the downside of the stochastic methods is that they suffer from high variance leading to slower convergence. To combat this issue, several variance reduced methods have been proposed with faster convergence guarantees than vanilla stochastic gradient descent. Again, these variance reduced methods are not directly applicable when non-decomposable performance measures are used. In this paper, we develop a Variance Reduced Stochastic Proximal algorithm for AUC Maximization (\textsc{VRSPAM}) and perform a theoretical analysis as well as empirical analysis to show that our algorithm converges faster than SPAM which is the previous state-of-the-art for the AUC maximization problem.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.