Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Incentive-aware Contextual Pricing with Non-parametric Market Noise (1911.03508v3)

Published 8 Nov 2019 in cs.LG, cs.GT, and stat.ML

Abstract: We consider a dynamic pricing problem for repeated contextual second-price auctions with multiple strategic buyers who aim to maximize their long-term time discounted utility. The seller has limited information on buyers' overall demand curves which depends on a non-parametric market-noise distribution, and buyers may potentially submit corrupted bids (relative to true valuations) to manipulate the seller's pricing policy for more favorable reserve prices in the future. We focus on designing the seller's learning policy to set contextual reserve prices where the seller's goal is to minimize regret compared to the revenue of a benchmark clairvoyant policy that has full information of buyers' demand. We propose a policy with a phased-structure that incorporates randomized "isolation" periods, during which a buyer is randomly chosen to solely participate in the auction. We show that this design allows the seller to control the number of periods in which buyers significantly corrupt their bids. We then prove that our policy enjoys a $T$-period regret of $\widetilde{\mathcal{O}}(\sqrt{T})$ facing strategic buyers. Finally, we conduct numerical simulations to compare our proposed algorithm to standard pricing policies. Our numerical results show that our algorithm outperforms these policies under various buyer bidding behavior.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.