Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Domain, Translationese and Noise in Synthetic Data for Neural Machine Translation (1911.03362v2)

Published 6 Nov 2019 in cs.CL, cs.LG, and stat.ML

Abstract: The quality of neural machine translation can be improved by leveraging additional monolingual resources to create synthetic training data. Source-side monolingual data can be (forward-)translated into the target language for self-training; target-side monolingual data can be back-translated. It has been widely reported that back-translation delivers superior results, but could this be due to artefacts in the test sets? We perform a case study using French-English news translation task and separate test sets based on their original languages. We show that forward translation delivers superior gains in terms of BLEU on sentences that were originally in the source language, complementing previous studies which show large improvements with back-translation on sentences that were originally in the target language. To better understand when and why forward and back-translation are effective, we study the role of domains, translationese, and noise. While translationese effects are well known to influence MT evaluation, we also find evidence that news data from different languages shows subtle domain differences, which is another explanation for varying performance on different portions of the test set. We perform additional low-resource experiments which demonstrate that forward translation is more sensitive to the quality of the initial translation system than back-translation, and tends to perform worse in low-resource settings.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.