Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Memory-Augmented Recurrent Neural Networks Can Learn Generalized Dyck Languages (1911.03329v1)

Published 8 Nov 2019 in cs.CL, cs.LG, and cs.NE

Abstract: We introduce three memory-augmented Recurrent Neural Networks (MARNNs) and explore their capabilities on a series of simple language modeling tasks whose solutions require stack-based mechanisms. We provide the first demonstration of neural networks recognizing the generalized Dyck languages, which express the core of what it means to be a language with hierarchical structure. Our memory-augmented architectures are easy to train in an end-to-end fashion and can learn the Dyck languages over as many as six parenthesis-pairs, in addition to two deterministic palindrome languages and the string-reversal transduction task, by emulating pushdown automata. Our experiments highlight the increased modeling capacity of memory-augmented models over simple RNNs, while inflecting our understanding of the limitations of these models.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.