Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds (1911.03043v2)

Published 8 Nov 2019 in cs.DS, cs.LG, math.PR, math.ST, stat.ML, and stat.TH

Abstract: Estimating the normalizing constant of an unnormalized probability distribution has important applications in computer science, statistical physics, machine learning, and statistics. In this work, we consider the problem of estimating the normalizing constant $Z=\int_{\mathbb{R}d} e{-f(x)}\,\mathrm{d}x$ to within a multiplication factor of $1 \pm \varepsilon$ for a $\mu$-strongly convex and $L$-smooth function $f$, given query access to $f(x)$ and $\nabla f(x)$. We give both algorithms and lowerbounds for this problem. Using an annealing algorithm combined with a multilevel Monte Carlo method based on underdamped Langevin dynamics, we show that $\widetilde{\mathcal{O}}\Bigl(\frac{d{4/3}\kappa + d{7/6}\kappa{7/6}}{\varepsilon2}\Bigr)$ queries to $\nabla f$ are sufficient, where $\kappa= L / \mu$ is the condition number. Moreover, we provide an information theoretic lowerbound, showing that at least $\frac{d{1-o(1)}}{\varepsilon{2-o(1)}}$ queries are necessary. This provides a first nontrivial lowerbound for the problem.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube