Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Complexity of BWT-runs Minimization via Alphabet Reordering (1911.03035v2)

Published 8 Nov 2019 in cs.DS

Abstract: The Burrows-Wheeler Transform (BWT) has been an essential tool in text compression and indexing. First introduced in 1994, it went on to provide the backbone for the first encoding of the classic suffix tree data structure in space close to the entropy-based lower bound. Recently, there has been the development of compact suffix trees in space proportional to "$r$", the number of runs in the BWT, as well as the appearance of $r$ in the time complexity of new algorithms. Unlike other popular measures of compression, the parameter $r$ is sensitive to the lexicographic ordering given to the text's alphabet. Despite several past attempts to exploit this, a provably efficient algorithm for finding, or approximating, an alphabet ordering which minimizes $r$ has been open for years. We present the first set of results on the computational complexity of minimizing BWT-runs via alphabet reordering. We prove that the decision version of this problem is NP-complete and cannot be solved in time $2{o(\sigma + \sqrt{n})}$ unless the Exponential Time Hypothesis fails, where $\sigma$ is the size of the alphabet and $n$ is the length of the text. We also show that the optimization problem is APX-hard. In doing so, we relate two previously disparate topics: the optimal traveling salesperson path and the number of runs in the BWT of a text, providing a surprising connection between problems on graphs and text compression. Also, by relating recent results in the field of dictionary compression, we illustrate that an arbitrary alphabet ordering provides a $O(\log2 n)$-approximation. We provide an optimal linear-time algorithm for the problem of finding a run minimizing ordering on a subset of symbols (occurring only once) under ordering constraints, and prove a generalization of this problem to a class of graphs with BWT like properties called Wheeler graphs is NP-complete.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube