Papers
Topics
Authors
Recent
2000 character limit reached

J-MoDL: Joint Model-Based Deep Learning for Optimized Sampling and Reconstruction (1911.02945v4)

Published 6 Nov 2019 in eess.IV, cs.CV, and cs.LG

Abstract: Modern MRI schemes, which rely on compressed sensing or deep learning algorithms to recover MRI data from undersampled multichannel Fourier measurements, are widely used to reduce scan time. The image quality of these approaches is heavily dependent on the sampling pattern. We introduce a continuous strategy to jointly optimize the sampling pattern and network parameters. We use a multichannel forward model, consisting of a non-uniform Fourier transform with continuously defined sampling locations, to realize the data consistency block within a model-based deep learning image reconstruction scheme. This approach facilitates the joint and continuous optimization of the sampling pattern and the CNN parameters to improve image quality. We observe that the joint optimization of the sampling patterns and the reconstruction module significantly improves the performance of most deep learning reconstruction algorithms. The source code of the proposed joint learning framework is available at https://github.com/hkaggarwal/J-MoDL.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.