Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A robust adaptive model predictive control framework for nonlinear uncertain systems (1911.02899v2)

Published 7 Nov 2019 in eess.SY and cs.SY

Abstract: In this paper, we present a tube-based framework for robust adaptive model predictive control (RAMPC) for nonlinear systems subject to parametric uncertainty and additive disturbances. Set-membership estimation is used to provide accurate bounds on the parametric uncertainty, which are employed for the construction of the tube in a robust MPC scheme. The resulting RAMPC framework ensures robust recursive feasibility and robust constraint satisfaction, while allowing for less conservative operation compared to robust MPC schemes without model/parameter adaptation. Furthermore, by using an additional mean-squared point estimate in the objective function the framework ensures finite-gain $\mathcal{L}_2$ stability w.r.t. additive disturbances. As a first contribution we derive suitable monotonicity and non-increasing properties on general parameter estimation algorithms and tube/set based RAMPC schemes that ensure robust recursive feasibility and robust constraint satisfaction under recursive model updates. Then, as the main contribution of this paper, we provide similar conditions for a tube based formulation that is parametrized using an incremental Lyapunov function, a scalar contraction rate and a function bounding the uncertainty. With this result, we can provide simple constructive designs for different RAMPC schemes with varying computational complexity and conservatism. As a corollary, we can demonstrate that state of the art formulations for nonlinear RAMPC are a special case of the proposed framework. We provide a numerical example that demonstrates the flexibility of the proposed framework and showcase improvements compared to state of the art approaches.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.