Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CROWN: Conversational Passage Ranking by Reasoning over Word Networks (1911.02850v3)

Published 7 Nov 2019 in cs.IR and cs.CL

Abstract: Information needs around a topic cannot be satisfied in a single turn; users typically ask follow-up questions referring to the same theme and a system must be capable of understanding the conversational context of a request to retrieve correct answers. In this paper, we present our submission to the TREC Conversational Assistance Track 2019, in which such a conversational setting is explored. We propose a simple unsupervised method for conversational passage ranking by formulating the passage score for a query as a combination of similarity and coherence. To be specific, passages are preferred that contain words semantically similar to the words used in the question, and where such words appear close by. We built a word-proximity network (WPN) from a large corpus, where words are nodes and there is an edge between two nodes if they co-occur in the same passages in a statistically significant way, within a context window. Our approach, named CROWN, improved nDCG scores over a provided Indri baseline on the CAsT training data. On the evaluation data for CAsT, our best run submission achieved above-average performance with respect to AP@5 and nDCG@1000.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.