Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A local epsilon version of Reed's Conjecture (1911.02672v2)

Published 6 Nov 2019 in math.CO and cs.DM

Abstract: In 1998, Reed conjectured that every graph $G$ satisfies $\chi(G) \leq \lceil \frac{1}{2}(\Delta(G) + 1 + \omega(G))\rceil$, where $\chi(G)$ is the chromatic number of $G$, $\Delta(G)$ is the maximum degree of $G$, and $\omega(G)$ is the clique number of $G$. As evidence for his conjecture, he proved an "epsilon version" of it, i.e. that there exists some $\varepsilon > 0$ such that $\chi(G) \leq (1 - \varepsilon)(\Delta(G) + 1) + \varepsilon\omega(G)$. It is natural to ask if Reed's conjecture or an epsilon version of it is true for the list-chromatic number. In this paper we consider a "local version" of the list-coloring version of Reed's conjecture. Namely, we conjecture that if $G$ is a graph with list-assignment $L$ such that for each vertex $v$ of $G$, $|L(v)| \geq \lceil \frac{1}{2}(d(v) + 1 + \omega(v))\rceil$, where $d(v)$ is the degree of $v$ and $\omega(v)$ is the size of the largest clique containing $v$, then $G$ is $L$-colorable. Our main result is that an "epsilon version" of this conjecture is true, under some mild assumptions. Using this result, we also prove a significantly improved lower bound on the density of $k$-critical graphs with clique number less than $k/2$, as follows. For every $\alpha > 0$, if $\varepsilon \leq \frac{\alpha2}{1350}$, then if $G$ is an $L$-critical graph for some $k$-list-assignment $L$ such that $\omega(G) < (\frac{1}{2} - \alpha)k$ and $k$ is sufficiently large, then $G$ has average degree at least $(1 + \varepsilon)k$. This implies that for every $\alpha > 0$, there exists $\varepsilon > 0$ such that if $G$ is a graph with $\omega(G)\leq (\frac{1}{2} - \alpha)\mathrm{mad}(G)$, where $\mathrm{mad}(G)$ is the maximum average degree of $G$, then $\chi_\ell(G) \leq \left\lceil (1 - \varepsilon)(\mathrm{mad}(G) + 1) + \varepsilon \omega(G)\right\rceil$.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube