Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

A local epsilon version of Reed's Conjecture (1911.02672v2)

Published 6 Nov 2019 in math.CO and cs.DM

Abstract: In 1998, Reed conjectured that every graph $G$ satisfies $\chi(G) \leq \lceil \frac{1}{2}(\Delta(G) + 1 + \omega(G))\rceil$, where $\chi(G)$ is the chromatic number of $G$, $\Delta(G)$ is the maximum degree of $G$, and $\omega(G)$ is the clique number of $G$. As evidence for his conjecture, he proved an "epsilon version" of it, i.e. that there exists some $\varepsilon > 0$ such that $\chi(G) \leq (1 - \varepsilon)(\Delta(G) + 1) + \varepsilon\omega(G)$. It is natural to ask if Reed's conjecture or an epsilon version of it is true for the list-chromatic number. In this paper we consider a "local version" of the list-coloring version of Reed's conjecture. Namely, we conjecture that if $G$ is a graph with list-assignment $L$ such that for each vertex $v$ of $G$, $|L(v)| \geq \lceil \frac{1}{2}(d(v) + 1 + \omega(v))\rceil$, where $d(v)$ is the degree of $v$ and $\omega(v)$ is the size of the largest clique containing $v$, then $G$ is $L$-colorable. Our main result is that an "epsilon version" of this conjecture is true, under some mild assumptions. Using this result, we also prove a significantly improved lower bound on the density of $k$-critical graphs with clique number less than $k/2$, as follows. For every $\alpha > 0$, if $\varepsilon \leq \frac{\alpha2}{1350}$, then if $G$ is an $L$-critical graph for some $k$-list-assignment $L$ such that $\omega(G) < (\frac{1}{2} - \alpha)k$ and $k$ is sufficiently large, then $G$ has average degree at least $(1 + \varepsilon)k$. This implies that for every $\alpha > 0$, there exists $\varepsilon > 0$ such that if $G$ is a graph with $\omega(G)\leq (\frac{1}{2} - \alpha)\mathrm{mad}(G)$, where $\mathrm{mad}(G)$ is the maximum average degree of $G$, then $\chi_\ell(G) \leq \left\lceil (1 - \varepsilon)(\mathrm{mad}(G) + 1) + \varepsilon \omega(G)\right\rceil$.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.