Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Map Enhanced Route Travel Time Prediction using Deep Neural Networks (1911.02623v1)

Published 6 Nov 2019 in cs.LG and stat.ML

Abstract: Travel time estimation is a fundamental problem in transportation science with extensive literature. The study of these techniques has intensified due to availability of many publicly available large trip datasets. Recently developed deep learning based models have improved the generality and performance and have focused on estimating times for individual sub-trajectories and aggregating them to predict the travel time of the entire trajectory. However, these techniques ignore the road network information. In this work, we propose and study techniques for incorporating road networks along with historical trips' data into travel time prediction. We incorporate both node embeddings as well as road distance into the existing model. Experiments on large real-world benchmark datasets suggest improved performance, especially when the train data is small. As expected, the proposed method performs better than the baseline when there is a larger difference between road distance and Vincenty distance between start and end points.

Citations (11)

Summary

We haven't generated a summary for this paper yet.