Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Interactive shallow Clifford circuits: quantum advantage against NC$^1$ and beyond (1911.02555v1)

Published 6 Nov 2019 in quant-ph and cs.CC

Abstract: Recent work of Bravyi et al. and follow-up work by Bene Watts et al. demonstrates a quantum advantage for shallow circuits: constant-depth quantum circuits can perform a task which constant-depth classical (i.e., AC$0$) circuits cannot. Their results have the advantage that the quantum circuit is fairly practical, and their proofs are free of hardness assumptions (e.g., factoring is classically hard, etc.). Unfortunately, constant-depth classical circuits are too weak to yield a convincing real-world demonstration of quantum advantage. We attempt to hold on to the advantages of the above results, while increasing the power of the classical model. Our main result is a two-round interactive task which is solved by a constant-depth quantum circuit (using only Clifford gates, between neighboring qubits of a 2D grid, with Pauli measurements), but such that any classical solution would necessarily solve $\oplus$L-hard problems. This implies a more powerful class of constant-depth classical circuits (e.g., AC$0[p]$ for any prime $p$) unconditionally cannot perform the task. Furthermore, under standard complexity-theoretic conjectures, log-depth circuits and log-space Turing machines cannot perform the task either. Using the same techniques, we prove hardness results for weaker complexity classes under more restrictive circuit topologies. Specifically, we give QNC$0$ interactive tasks on $2 \times n$ and $1 \times n$ grids which require classical simulations of power NC$1$ and AC${0}[6]$, respectively. Moreover, these hardness results are robust to a small constant fraction of error in the classical simulation. We use ideas and techniques from the theory of branching programs, quantum contextuality, measurement-based quantum computation, and Kilian randomization.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.