Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance (1911.02466v2)

Published 6 Nov 2019 in cs.CV

Abstract: The success of image perturbations that are designed to fool image classifier is assessed in terms of both adversarial effect and visual imperceptibility. The conventional assumption on imperceptibility is that perturbations should strive for tight $L_p$-norm bounds in RGB space. In this work, we drop this assumption by pursuing an approach that exploits human color perception, and more specifically, minimizing perturbation size with respect to perceptual color distance. Our first approach, Perceptual Color distance C&W (PerC-C&W), extends the widely-used C&W approach and produces larger RGB perturbations. PerC-C&W is able to maintain adversarial strength, while contributing to imperceptibility. Our second approach, Perceptual Color distance Alternating Loss (PerC-AL), achieves the same outcome, but does so more efficiently by alternating between the classification loss and perceptual color difference when updating perturbations. Experimental evaluation shows PerC approaches outperform conventional $L_p$ approaches in terms of robustness and transferability, and also demonstrates that the PerC distance can provide added value on top of existing structure-based methods to creating image perturbations.

Citations (126)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.