Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Enriching Conversation Context in Retrieval-based Chatbots (1911.02290v1)

Published 6 Nov 2019 in cs.CL

Abstract: Work on retrieval-based chatbots, like most sequence pair matching tasks, can be divided into Cross-encoders that perform word matching over the pair, and Bi-encoders that encode the pair separately. The latter has better performance, however since candidate responses cannot be encoded offline, it is also much slower. Lately, multi-layer transformer architectures pre-trained as LLMs have been used to great effect on a variety of natural language processing and information retrieval tasks. Recent work has shown that these LLMs can be used in text-matching scenarios to create Bi-encoders that perform almost as well as Cross-encoders while having a much faster inference speed. In this paper, we expand upon this work by developing a sequence matching architecture that %takes into account contexts in the training dataset at inference time. utilizes the entire training set as a makeshift knowledge-base during inference. We perform detailed experiments demonstrating that this architecture can be used to further improve Bi-encoders performance while still maintaining a relatively high inference speed.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.