Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Breaching the 2-Approximation Barrier for Connectivity Augmentation: a Reduction to Steiner Tree (1911.02259v2)

Published 6 Nov 2019 in cs.DS

Abstract: The basic goal of survivable network design is to build a cheap network that maintains the connectivity between given sets of nodes despite the failure of a few edges/nodes. The Connectivity Augmentation Problem (CAP) is arguably one of the most basic problems in this area: given a $k$(-edge)-connected graph $G$ and a set of extra edges (links), select a minimum cardinality subset $A$ of links such that adding $A$ to $G$ increases its edge connectivity to $k+1$. Intuitively, one wants to make an existing network more reliable by augmenting it with extra edges. The best known approximation factor for this NP-hard problem is $2$, and this can be achieved with multiple approaches (the first such result is in [Frederickson and J\'aj\'a'81]). It is known [Dinitz et al.'76] that CAP can be reduced to the case $k=1$, a.k.a. the Tree Augmentation Problem (TAP), for odd $k$, and to the case $k=2$, a.k.a. the Cactus Augmentation Problem (CacAP), for even $k$. Several better than $2$ approximation algorithms are known for TAP, culminating with a recent $1.458$ approximation [Grandoni et al.'18]. However, for CacAP the best known approximation is $2$. In this paper we breach the $2$ approximation barrier for CacAP, hence for CAP, by presenting a polynomial-time $2\ln(4)-\frac{967}{1120}+\epsilon<1.91$ approximation. Previous approaches exploit properties of TAP that do not seem to generalize to CacAP. We instead use a reduction to the Steiner tree problem which was previously used in parameterized algorithms [Basavaraju et al.'14]. This reduction is not approximation preserving, and using the current best approximation factor for Steiner tree [Byrka et al.'13] as a black-box would not be good enough to improve on $2$. To achieve the latter goal, we ``open the box'' and exploit the specific properties of the instances of Steiner tree arising from CacAP.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.