Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Localization-aware Channel Pruning for Object Detection (1911.02237v3)

Published 6 Nov 2019 in cs.CV

Abstract: Channel pruning is one of the important methods for deep model compression. Most of existing pruning methods mainly focus on classification. Few of them conduct systematic research on object detection. However, object detection is different from classification, which requires not only semantic information but also localization information. In this paper, based on discrimination-aware channel pruning (DCP) which is state-of-the-art pruning method for classification, we propose a localization-aware auxiliary network to find out the channels with key information for classification and regression so that we can conduct channel pruning directly for object detection, which saves lots of time and computing resources. In order to capture the localization information, we first design the auxiliary network with a contextual ROIAlign layer which can obtain precise localization information of the default boxes by pixel alignment and enlarges the receptive fields of the default boxes when pruning shallow layers. Then, we construct a loss function for object detection task which tends to keep the channels that contain the key information for classification and regression. Extensive experiments demonstrate the effectiveness of our method. On MS COCO, we prune 70\% parameters of the SSD based on ResNet-50 with modest accuracy drop, which outperforms the-state-of-art method.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.