Papers
Topics
Authors
Recent
2000 character limit reached

Guiding Non-Autoregressive Neural Machine Translation Decoding with Reordering Information (1911.02215v2)

Published 6 Nov 2019 in cs.CL

Abstract: Non-autoregressive neural machine translation (NAT) generates each target word in parallel and has achieved promising inference acceleration. However, existing NAT models still have a big gap in translation quality compared to autoregressive neural machine translation models due to the enormous decoding space. To address this problem, we propose a novel NAT framework named ReorderNAT which explicitly models the reordering information in the decoding procedure. We further introduce deterministic and non-deterministic decoding strategies that utilize reordering information to narrow the decoding search space in our proposed ReorderNAT. Experimental results on various widely-used datasets show that our proposed model achieves better performance compared to existing NAT models, and even achieves comparable translation quality as autoregressive translation models with a significant speedup.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.