Papers
Topics
Authors
Recent
2000 character limit reached

GP-ALPS: Automatic Latent Process Selection for Multi-Output Gaussian Process Models (1911.01929v2)

Published 5 Nov 2019 in stat.ML, cs.LG, and stat.ME

Abstract: A simple and widely adopted approach to extend Gaussian processes (GPs) to multiple outputs is to model each output as a linear combination of a collection of shared, unobserved latent GPs. An issue with this approach is choosing the number of latent processes and their kernels. These choices are typically done manually, which can be time consuming and prone to human biases. We propose Gaussian Process Automatic Latent Process Selection (GP-ALPS), which automatically chooses the latent processes by turning off those that do not meaningfully contribute to explaining the data. We develop a variational inference scheme, assess the quality of the variational posterior by comparing it against the gold standard MCMC, and demonstrate the suitability of GP-ALPS in a set of preliminary experiments.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.