Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Distributed Model Predictive Safety Certification for Learning-based Control (1911.01832v2)

Published 5 Nov 2019 in eess.SY and cs.SY

Abstract: While distributed algorithms provide advantages for the control of complex large-scale systems by requiring a lower local computational load and less local memory, it is a challenging task to design high-performance distributed control policies. Learning-based control algorithms offer promising opportunities to address this challenge, but generally cannot guarantee safety in terms of state and input constraint satisfaction. A recently proposed safety framework for centralized linear systems ensures safety by matching the learning-based input online with the initial input of a model predictive control law capable of driving the system to a terminal set known to be safe. We extend this idea to derive a distributed model predictive safety certification (DMPSC) scheme, which is able to ensure state and input constraint satisfaction when applying any learning-based control algorithm to an uncertain distributed linear system with dynamic couplings. The scheme is based on a distributed tube-based model predictive control (MPC) concept, where subsystems negotiate local tube sizes among neighbors in order to mitigate restrictiveness of the safety approach. In addition, we present a technique for generating a structured ellipsoidal robust positive invariant tube. In numerical simulations, we show that the safety framework ensures constraint satisfaction for an initially unsafe control policy and allows to improve overall control performance compared to robust distributed MPC.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.