Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

ColluEagle: Collusive review spammer detection using Markov random fields (1911.01690v1)

Published 5 Nov 2019 in cs.IR, cs.LG, and cs.SI

Abstract: Product reviews are extremely valuable for online shoppers in providing purchase decisions. Driven by immense profit incentives, fraudsters deliberately fabricate untruthful reviews to distort the reputation of online products. As online reviews become more and more important, group spamming, i.e., a team of fraudsters working collaboratively to attack a set of target products, becomes a new fashion. Previous works use review network effects, i.e. the relationships among reviewers, reviews, and products, to detect fake reviews or review spammers, but ignore time effects, which are critical in characterizing group spamming. In this paper, we propose a novel Markov random field (MRF)-based method (ColluEagle) to detect collusive review spammers, as well as review spam campaigns, considering both network effects and time effects. First we identify co-review pairs, a review phenomenon that happens between two reviewers who review a common product in a similar way, and then model reviewers and their co-review pairs as a pairwise-MRF, and use loopy belief propagation to evaluate the suspiciousness of reviewers. We further design a high quality yet easy-to-compute node prior for ColluEagle, through which the review spammer groups can also be subsequently identified. Experiments show that ColluEagle can not only detect collusive spammers with high precision, significantly outperforming state-of-the-art baselines --- FraudEagle and SpEagle, but also identify highly suspicious review spammer campaigns.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.