Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Review-based Question Generation with Adaptive Instance Transfer and Augmentation (1911.01556v2)

Published 5 Nov 2019 in cs.IR and cs.CL

Abstract: Online reviews provide rich information about products and service, while it remains inefficient for potential consumers to exploit the reviews for fulfilling their specific information need. We propose to explore question generation as a new way of exploiting review information. One major challenge of this task is the lack of review-question pairs for training a neural generation model. We propose an iterative learning framework for handling this challenge via adaptive transfer and augmentation of the training instances with the help of the available user-posed question-answer data. To capture the aspect characteristics in reviews, the augmentation and generation procedures incorporate related features extracted via unsupervised learning. Experiments on data from 10 categories of a popular E-commerce site demonstrate the effectiveness of the framework, as well as the usefulness of the new task.

Citations (17)

Summary

We haven't generated a summary for this paper yet.