Papers
Topics
Authors
Recent
2000 character limit reached

Review-based Question Generation with Adaptive Instance Transfer and Augmentation (1911.01556v2)

Published 5 Nov 2019 in cs.IR and cs.CL

Abstract: Online reviews provide rich information about products and service, while it remains inefficient for potential consumers to exploit the reviews for fulfilling their specific information need. We propose to explore question generation as a new way of exploiting review information. One major challenge of this task is the lack of review-question pairs for training a neural generation model. We propose an iterative learning framework for handling this challenge via adaptive transfer and augmentation of the training instances with the help of the available user-posed question-answer data. To capture the aspect characteristics in reviews, the augmentation and generation procedures incorporate related features extracted via unsupervised learning. Experiments on data from 10 categories of a popular E-commerce site demonstrate the effectiveness of the framework, as well as the usefulness of the new task.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.