Papers
Topics
Authors
Recent
2000 character limit reached

Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry (1911.01469v1)

Published 4 Nov 2019 in stat.ML, cs.DS, cs.IT, cs.LG, and math.IT

Abstract: We study the Proximal Langevin Algorithm (PLA) for sampling from a probability distribution $\nu = e{-f}$ on $\mathbb{R}n$ under isoperimetry. We prove a convergence guarantee for PLA in Kullback-Leibler (KL) divergence when $\nu$ satisfies log-Sobolev inequality (LSI) and $f$ has bounded second and third derivatives. This improves on the result for the Unadjusted Langevin Algorithm (ULA), and matches the fastest known rate for sampling under LSI (without Metropolis filter) with a better dependence on the LSI constant. We also prove convergence guarantees for PLA in R\'enyi divergence of order $q > 1$ when the biased limit satisfies either LSI or Poincar\'e inequality.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.