Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry (1911.01469v1)

Published 4 Nov 2019 in stat.ML, cs.DS, cs.IT, cs.LG, and math.IT

Abstract: We study the Proximal Langevin Algorithm (PLA) for sampling from a probability distribution $\nu = e{-f}$ on $\mathbb{R}n$ under isoperimetry. We prove a convergence guarantee for PLA in Kullback-Leibler (KL) divergence when $\nu$ satisfies log-Sobolev inequality (LSI) and $f$ has bounded second and third derivatives. This improves on the result for the Unadjusted Langevin Algorithm (ULA), and matches the fastest known rate for sampling under LSI (without Metropolis filter) with a better dependence on the LSI constant. We also prove convergence guarantees for PLA in R\'enyi divergence of order $q > 1$ when the biased limit satisfies either LSI or Poincar\'e inequality.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)