Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Time/Accuracy Tradeoffs for Learning a ReLU with respect to Gaussian Marginals (1911.01462v1)

Published 4 Nov 2019 in cs.LG, cs.DS, and stat.ML

Abstract: We consider the problem of computing the best-fitting ReLU with respect to square-loss on a training set when the examples have been drawn according to a spherical Gaussian distribution (the labels can be arbitrary). Let $\mathsf{opt} < 1$ be the population loss of the best-fitting ReLU. We prove: 1. Finding a ReLU with square-loss $\mathsf{opt} + \epsilon$ is as hard as the problem of learning sparse parities with noise, widely thought to be computationally intractable. This is the first hardness result for learning a ReLU with respect to Gaussian marginals, and our results imply -{\emph unconditionally}- that gradient descent cannot converge to the global minimum in polynomial time. 2. There exists an efficient approximation algorithm for finding the best-fitting ReLU that achieves error $O(\mathsf{opt}{2/3})$. The algorithm uses a novel reduction to noisy halfspace learning with respect to $0/1$ loss. Prior work due to Soltanolkotabi [Sol17] showed that gradient descent can find the best-fitting ReLU with respect to Gaussian marginals, if the training set is exactly labeled by a ReLU.

Citations (52)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.