Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Counting Small Permutation Patterns (1911.01414v3)

Published 4 Nov 2019 in cs.DS, math.CO, and stat.CO

Abstract: A sample of n generic points in the xy-plane defines a permutation that relates their ranks along the two axes. Every subset of k points similarly defines a pattern, which occurs in that permutation. The number of occurrences of small patterns in a large permutation arises in many areas, including nonparametric statistics. It is therefore desirable to count them more efficiently than the straightforward ~O(nk) time algorithm. This work proposes new algorithms for counting patterns. We show that all patterns of order 2 and 3, as well as eight patterns of order 4, can be counted in nearly linear time. To that end, we develop an algebraic framework that we call corner tree formulas. Our approach generalizes the existing methods and allows a systematic study of their scope. Using the machinery of corner trees, we find twenty-three independent linear combinations of order-4 patterns, that can be computed in time ~O(n). We also describe an algorithm that counts one of the remaining 4-patterns, and hence all 4-patterns, in time ~O(n3/2). As a practical application, we provide a nearly linear time computation of a statistic by Yanagimoto (1970), Bergsma and Dassios (2010). This statistic yields a natural and strongly consistent variant of Hoeffding's test for independence of X and Y, given a random sample as above. This improves upon the so far most efficient ~O(n2) algorithm.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.