Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MRNN: A Multi-Resolution Neural Network with Duplex Attention for Document Retrieval in the Context of Question Answering (1911.00964v1)

Published 3 Nov 2019 in cs.IR and cs.CL

Abstract: The primary goal of ad-hoc retrieval (document retrieval in the context of question answering) is to find relevant documents satisfied the information need posted in a natural language query. It requires a good understanding of the query and all the documents in a corpus, which is difficult because the meaning of natural language texts depends on the context, syntax,and semantics. Recently deep neural networks have been used to rank search results in response to a query. In this paper, we devise a multi-resolution neural network(MRNN) to leverage the whole hierarchy of representations for document retrieval. The proposed MRNN model is capable of deriving a representation that integrates representations of different levels of abstraction from all the layers of the learned hierarchical representation.Moreover, a duplex attention component is designed to refinethe multi-resolution representation so that an optimal contextfor matching the query and document can be determined. More specifically, the first attention mechanism determines optimal context from the learned multi-resolution representation for the query and document. The latter attention mechanism aims to fine-tune the representation so that the query and the relevant document are closer in proximity. The empirical study shows that MRNN with the duplex attention is significantly superior to existing models used for ad-hoc retrieval on benchmark datasets including SQuAD, WikiQA, QUASAR, and TrecQA.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.