Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 223 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Clustering in Partially Labeled Stochastic Block Models via Total Variation Minimization (1911.00958v2)

Published 3 Nov 2019 in cs.LG and stat.ML

Abstract: A main task in data analysis is to organize data points into coherent groups or clusters. The stochastic block model is a probabilistic model for the cluster structure. This model prescribes different probabilities for the presence of edges within a cluster and between different clusters. We assume that the cluster assignments are known for at least one data point in each cluster. In such a partially labeled stochastic block model, clustering amounts to estimating the cluster assignments of the remaining data points. We study total variation minimization as a method for this clustering task. We implement the resulting clustering algorithm as a highly scalable message-passing protocol. We also provide a condition on the model parameters such that total variation minimization allows for accurate clustering.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.