Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Problem Dependent Reinforcement Learning Bounds Which Can Identify Bandit Structure in MDPs (1911.00954v1)

Published 3 Nov 2019 in cs.LG, cs.AI, and stat.ML

Abstract: In order to make good decision under uncertainty an agent must learn from observations. To do so, two of the most common frameworks are Contextual Bandits and Markov Decision Processes (MDPs). In this paper, we study whether there exist algorithms for the more general framework (MDP) which automatically provide the best performance bounds for the specific problem at hand without user intervention and without modifying the algorithm. In particular, it is found that a very minor variant of a recently proposed reinforcement learning algorithm for MDPs already matches the best possible regret bound $\tilde O (\sqrt{SAT})$ in the dominant term if deployed on a tabular Contextual Bandit problem despite the agent being agnostic to such setting.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.