Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Automata Learning: An Algebraic Approach (1911.00874v3)

Published 3 Nov 2019 in cs.FL, cs.LG, and cs.LO

Abstract: We propose a generic categorical framework for learning unknown formal languages of various types (e.g. finite or infinite words, weighted and nominal languages). Our approach is parametric in a monad T that represents the given type of languages and their recognizing algebraic structures. Using the concept of anautomata presentation of T-algebras, we demonstrate that the task of learning a T-recognizable language can be reduced to learning an abstract form of algebraic automaton whose transitions are modeled by a functor. For the important case of adjoint automata, we devise a learning algorithm generalizing Angluin's L*. The algorithm is phrased in terms of categorically described extension steps; we provide for a termination and complexity analysis based on a dedicated notion of finiteness. Our framework applies to structures like omega-regular languages that were not within the scope of existing categorical accounts of automata learning. In addition, it yields new learning algorithms for several types of languages for which no such algorithms were previously known at all, including sorted languages, nominal languages with name binding, and cost functions.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.