Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MadNet: Using a MAD Optimization for Defending Against Adversarial Attacks (1911.00870v2)

Published 3 Nov 2019 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: This paper is concerned with the defense of deep models against adversarial attacks. Inspired by the certificate defense approach, we propose a maximal adversarial distortion (MAD) optimization method for robustifying deep networks. MAD captures the idea of increasing separability of class clusters in the embedding space while decreasing the network sensitivity to small distortions. Given a deep neural network (DNN) for a classification problem, an application of MAD optimization results in MadNet, a version of the original network, now equipped with an adversarial defense mechanism. MAD optimization is intuitive, effective and scalable, and the resulting MadNet can improve the original accuracy. We present an extensive empirical study demonstrating that MadNet improves adversarial robustness performance compared to state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.