Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic Optimal Control of HVAC system for Energy-efficient Buildings (1911.00840v3)

Published 3 Nov 2019 in eess.SY and cs.SY

Abstract: The heating, ventilation and air-conditioning (HVAC) system accounts for substantial energy use in buildings, whereas a large group of occupants are still not actually feeling comfortable staying inside. This poses the issue of developing energy-efficient HVAC control, i.e., reduce energy use (cost) while simultaneously enhancing human comfort. This paper pursues the objective and studies the stochastic optimal HVAC control subject to uncertain thermal demand (i.e., the weather and occupancy etc). Particularly, we involve the elaborate predicted mean vote (PMV) thermal comfort model in the optimization. The problem is computationally challenging due to the non-linear and non-analytical constraints imposed by the system dynamics and PMV model. We make the following contributions to address it. First, we formulate the problem as a Markov decision process (MDP) which is a desirable modeling technique capable of handling the complexities. Second, we propose a gradient-based learning (GB-L) method for progressively learning a stochastic control policy off-line and store it for on-line execution. Third, we prove the learning method converge to the optimal policies theoretically, and its performance (i.e., energy cost, thermal comfort and on-line computation) for HVAC control via simulations. The comparisons with the existing model predictive control based relaxation (MPC-R) method which is assumed with accurate future information and supposed to provide the near-optimal bounds, show that though there exists some performance loss in energy cost reduction (i.e., 6.5%), the proposed method can enable efficient on-line implementation (less than 1 second) and provide high probability of thermal comfort under uncertainties.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.