Papers
Topics
Authors
Recent
2000 character limit reached

Visual Relationship Detection with Relative Location Mining (1911.00713v1)

Published 2 Nov 2019 in cs.CV and cs.MM

Abstract: Visual relationship detection, as a challenging task used to find and distinguish the interactions between object pairs in one image, has received much attention recently. In this work, we propose a novel visual relationship detection framework by deeply mining and utilizing relative location of object-pair in every stage of the procedure. In both the stages, relative location information of each object-pair is abstracted and encoded as auxiliary feature to improve the distinguishing capability of object-pairs proposing and predicate recognition, respectively; Moreover, one Gated Graph Neural Network(GGNN) is introduced to mine and measure the relevance of predicates using relative location. With the location-based GGNN, those non-exclusive predicates with similar spatial position can be clustered firstly and then be smoothed with close classification scores, thus the accuracy of top $n$ recall can be increased further. Experiments on two widely used datasets VRD and VG show that, with the deeply mining and exploiting of relative location information, our proposed model significantly outperforms the current state-of-the-art.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.