Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Causal Inference via Conditional Kolmogorov Complexity using MDL Binning (1911.00332v2)

Published 31 Oct 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Recent developments have linked causal inference with Algorithmic Information Theory, and methods have been developed that utilize Conditional Kolmogorov Complexity to determine causation between two random variables. We present a method for inferring causal direction between continuous variables by using an MDL Binning technique for data discretization and complexity calculation. Our method captures the shape of the data and uses it to determine which variable has more information about the other. Its high predictive performance and robustness is shown on several real world use cases.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.