Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Regularized Non-negative Spectral Embedding for Clustering (1911.00179v1)

Published 1 Nov 2019 in cs.LG and stat.ML

Abstract: Spectral Clustering is a popular technique to split data points into groups, especially for complex datasets. The algorithms in the Spectral Clustering family typically consist of multiple separate stages (such as similarity matrix construction, low-dimensional embedding, and K-Means clustering as post processing), which may lead to sub-optimal results because of the possible mismatch between different stages. In this paper, we propose an end-to-end single-stage learning method to clustering called Regularized Non-negative Spectral Embedding (RNSE) which extends Spectral Clustering with the adaptive learning of similarity matrix and meanwhile utilizes non-negative constraints to facilitate one-step clustering (directly from data points to clustering labels). Two well-founded methods, successive alternating projection and strategic multiplicative update, are employed to work out the quite challenging optimization problems in RNSE. Extensive experiments on both synthetic and real-world datasets demonstrate RNSE superior clustering performance to some state-of-the-art competitors.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.