Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Centroid Based Concept Learning for RGB-D Indoor Scene Classification (1911.00155v4)

Published 1 Nov 2019 in cs.CV, cs.AI, and cs.LG

Abstract: This paper contributes a novel cognitively-inspired method for RGB-D indoor scene classification. High intra-class variance and low inter-class variance make indoor scene classification an extremely challenging task. To cope with this problem, we propose a clustering approach inspired by the concept learning model of the hippocampus and the neocortex, to generate clusters and centroids for different scene categories. Test images depicting different scenes are classified by using their distance to the closest centroids (concepts). Modeling of RGB-D scenes as centroids not only leads to state-of-the-art classification performance on benchmark datasets (SUN RGB-D and NYU Depth V2), but also offers a method for inspecting and interpreting the space of centroids. Inspection of the centroids generated by our approach on RGB-D datasets leads us to propose a method for merging conceptually similar categories, resulting in improved accuracy for all approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Github Logo Streamline Icon: https://streamlinehq.com

GitHub