Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Can adversarial training learn image captioning ? (1910.14609v1)

Published 31 Oct 2019 in cs.CL, cs.CV, and cs.LG

Abstract: Recently, generative adversarial networks (GAN) have gathered a lot of interest. Their efficiency in generating unseen samples of high quality, especially images, has improved over the years. In the field of Natural Language Generation (NLG), the use of the adversarial setting to generate meaningful sentences has shown to be difficult for two reasons: the lack of existing architectures to produce realistic sentences and the lack of evaluation tools. In this paper, we propose an adversarial architecture related to the conditional GAN (cGAN) that generates sentences according to a given image (also called image captioning). This attempt is the first that uses no pre-training or reinforcement methods. We also explain why our experiment settings can be safely evaluated and interpreted for further works.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.