Papers
Topics
Authors
Recent
2000 character limit reached

Can adversarial training learn image captioning ? (1910.14609v1)

Published 31 Oct 2019 in cs.CL, cs.CV, and cs.LG

Abstract: Recently, generative adversarial networks (GAN) have gathered a lot of interest. Their efficiency in generating unseen samples of high quality, especially images, has improved over the years. In the field of Natural Language Generation (NLG), the use of the adversarial setting to generate meaningful sentences has shown to be difficult for two reasons: the lack of existing architectures to produce realistic sentences and the lack of evaluation tools. In this paper, we propose an adversarial architecture related to the conditional GAN (cGAN) that generates sentences according to a given image (also called image captioning). This attempt is the first that uses no pre-training or reinforcement methods. We also explain why our experiment settings can be safely evaluated and interpreted for further works.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.