Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Document-level Neural Machine Translation with Associated Memory Network (1910.14528v2)

Published 31 Oct 2019 in cs.CL

Abstract: Standard neural machine translation (NMT) is on the assumption that the document-level context is independent. Most existing document-level NMT approaches are satisfied with a smattering sense of global document-level information, while this work focuses on exploiting detailed document-level context in terms of a memory network. The capacity of the memory network that detecting the most relevant part of the current sentence from memory renders a natural solution to model the rich document-level context. In this work, the proposed document-aware memory network is implemented to enhance the Transformer NMT baseline. Experiments on several tasks show that the proposed method significantly improves the NMT performance over strong Transformer baselines and other related studies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.