Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Bound on the Combinatorial Complexity of Approximating Polytopes (1910.14459v3)

Published 30 Oct 2019 in cs.CG

Abstract: This paper considers the question of how to succinctly approximate a multidimensional convex body by a polytope. Given a convex body $K$ of unit diameter in Euclidean $d$-dimensional space (where $d$ is a constant) and an error parameter $\varepsilon > 0$, the objective is to determine a convex polytope of low combinatorial complexity whose Hausdorff distance from $K$ is at most $\varepsilon$. By combinatorial complexity we mean the total number of faces of all dimensions. Classical constructions by Dudley and Bronshteyn/Ivanov show that $O(1/\varepsilon{(d-1)/2})$ facets or vertices are possible, respectively, but neither achieves both bounds simultaneously. In this paper, we show that it is possible to construct a polytope with $O(1/\varepsilon{(d-1)/2})$ combinatorial complexity, which is optimal in the worst case. Our result is based on a new relationship between $\varepsilon$-width caps of a convex body and its polar body. Using this relationship, we are able to obtain a volume-sensitive bound on the number of approximating caps that are "essentially different." We achieve our main result by combining this with a variant of the witness-collector method and a novel variable-thickness layered construction of the economical cap covering.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.