Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bilinear systems -- A new link to $\mathcal H_2$-norms, relations to stochastic systems and further properties (1910.14427v5)

Published 31 Oct 2019 in math.NA, cs.NA, and math.OC

Abstract: In this paper, we prove several new results that give new insights into bilinear systems. We discuss conditions for asymptotic stability using probabilistic arguments. Moreover, we provide a global characterization of reachability in bilinear systems based on a certain Gramian. Reachability energy estimates using the same Gramian have only been local so far. The main result of this paper, however, is a new link between the output error and the $\mathcal H_2$-error of two bilinear systems. This result has several consequences in the field of model order reduction. It explains why $\mathcal H_2$-optimal model order reduction leads to good approximations in terms of the output error. Moreover, output errors based on the $\mathcal H_2$-norm can now be proved for balancing related model order reduction schemes in this paper. All these new results are based on a Gronwall lemma for matrix differential equations that is established here.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)