Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

W-Net BF: DNN-based Beamformer Using Joint Training Approach (1910.14262v2)

Published 31 Oct 2019 in cs.SD and eess.AS

Abstract: Acoustic beamformers have been widely used to enhance audio signals. The best current methods are DNN-powered variants of the generalized eigenvalue beamformer, and DNN-based filterestimation methods that directly compute beamforming filters. Both approaches, while effective, have blindspots in their generalizability. We propose a novel approach that combines both approaches into a single framework that attempts to exploit the best features of both. The resulting model, called a W-Net beamformer, includes two components: the first computes a noise-masked reference which the second uses to estimate beamforming filters. Results on data that include a wide variety of room and noise conditions, including static and mobile noise sources, show that the proposed beamformer outperforms other methods in all tested evaluation metrics.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.