Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

S4G: Amodal Single-view Single-Shot SE(3) Grasp Detection in Cluttered Scenes (1910.14218v1)

Published 31 Oct 2019 in cs.RO and cs.CV

Abstract: Grasping is among the most fundamental and long-lasting problems in robotics study. This paper studies the problem of 6-DoF(degree of freedom) grasping by a parallel gripper in a cluttered scene captured using a commodity depth sensor from a single viewpoint. We address the problem in a learning-based framework. At the high level, we rely on a single-shot grasp proposal network, trained with synthetic data and tested in real-world scenarios. Our single-shot neural network architecture can predict amodal grasp proposal efficiently and effectively. Our training data synthesis pipeline can generate scenes of complex object configuration and leverage an innovative gripper contact model to create dense and high-quality grasp annotations. Experiments in synthetic and real environments have demonstrated that the proposed approach can outperform state-of-the-arts by a large margin.

Citations (146)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.