Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Explainable Prediction of Adverse Outcomes Using Clinical Notes (1910.14095v2)

Published 30 Oct 2019 in cs.LG and stat.ML

Abstract: Clinical notes contain a large amount of clinically valuable information that is ignored in many clinical decision support systems due to the difficulty that comes with mining that information. Recent work has found success leveraging deep learning models for the prediction of clinical outcomes using clinical notes. However, these models fail to provide clinically relevant and interpretable information that clinicians can utilize for informed clinical care. In this work, we augment a popular convolutional model with an attention mechanism and apply it to unstructured clinical notes for the prediction of ICU readmission and mortality. We find that the addition of the attention mechanism leads to competitive performance while allowing for the straightforward interpretation of predictions. We develop clear visualizations to present important spans of text for both individual predictions and high-risk cohorts. We then conduct a qualitative analysis and demonstrate that our model is consistently attending to clinically meaningful portions of the narrative for all of the outcomes that we explore.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.