Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Spectral properties of kernel matrices in the flat limit (1910.14067v3)

Published 30 Oct 2019 in math.NA, cs.NA, math.SP, math.ST, and stat.TH

Abstract: Kernel matrices are of central importance to many applied fields. In this manuscript, we focus on spectral properties of kernel matrices in the so-called ``flat limit'', which occurs when points are close together relative to the scale of the kernel. We establish asymptotic expressions for the determinants of the kernel matrices, which we then leverage to obtain asymptotic expressions for the main terms of the eigenvalues. Analyticity of the eigenprojectors yields expressions for limiting eigenvectors, which are strongly tied to discrete orthogonal polynomials. Both smooth and finitely smooth kernels are covered, with stronger results available in the finite smoothness case.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube