Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximately Stable Committee Selection (1910.14008v3)

Published 30 Oct 2019 in cs.GT and cs.DM

Abstract: In the committee selection problem, we are given $m$ candidates, and $n$ voters. Candidates can have different weights. A committee is a subset of candidates, and its weight is the sum of weights of its candidates. Each voter expresses an ordinal ranking over all possible committees. The only assumption we make on preferences is monotonicity: If $S \subseteq S'$ are two committees, then any voter weakly prefers $S'$ to $S$. We study a general notion of group fairness via stability: A committee of given total weight $K$ is stable if no coalition of voters can deviate and choose a committee of proportional weight, so that all these voters strictly prefer the new committee to the existing one. Extending this notion to approximation, for parameter $c \ge 1$, a committee $S$ of weight $K$ is said to be $c$-approximately stable if for any other committee $S'$ of weight $K'$, the fraction of voters that strictly prefer $S'$ to $S$ is strictly less than $\frac{c K'}{K}$. When $c = 1$, this condition is equivalent to classical core stability. The question we ask is: Does a $c$-approximately stable committee of weight at most any given value $K$ always exist for constant $c$? It is relatively easy to show that there exist monotone preferences for which $c \ge 2$. However, even for simple and widely studied preference structures, a non-trivial upper bound on $c$ has been elusive. In this paper, we show that $c = O(1)$ for all monotone preference structures. Our proof proceeds via showing an existence result for a randomized notion of stability, and iteratively rounding the resulting fractional solution.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.