Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identification of Dominant Subspaces for Linear Structured Parametric Systems and Model Reduction (1910.13945v1)

Published 30 Oct 2019 in math.NA and cs.NA

Abstract: In this paper, we discuss a novel model reduction framework for generalized linear systems. The transfer functions of these systems are assumed to have a special structure, e.g., coming from second-order linear systems and time-delay systems, and they may also have parameter dependencies. Firstly, we investigate the connection between classic interpolation-based model reduction methods with the reachability and observability subspaces of linear structured parametric systems. We show that if enough interpolation points are taken, the projection matrices of interpolation-based model reduction encode these subspaces. As a result, we are able to identify the dominant reachable and observable subspaces of the underlying system. Based on this, we propose a new model reduction algorithm combining these features leading to reduced-order systems. Furthermore, we pay special attention to computational aspects of the approach and discuss its applicability to a large-scale setting. We illustrate the efficiency of the proposed approach with several numerical large-scale benchmark examples.

Citations (8)

Summary

We haven't generated a summary for this paper yet.