Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Structure of Deep Neural Networks with a Priori Information in Wireless Tasks (1910.13728v2)

Published 30 Oct 2019 in cs.LG, cs.SY, eess.SY, and stat.ML

Abstract: Deep neural networks (DNNs) have been employed for designing wireless networks in many aspects, such as transceiver optimization, resource allocation, and information prediction. Existing works either use fully-connected DNN or the DNNs with specific structures that are designed in other domains. In this paper, we show that a priori information widely existed in wireless tasks is permutation invariant. For these tasks, we propose a DNN with special structure, where the weight matrices between layers of the DNN only consist of two smaller sub-matrices. By such way of parameter sharing, the number of model parameters reduces, giving rise to low sample and computational complexity for training a DNN. We take predictive resource allocation as an example to show how the designed DNN can be applied for learning the optimal policy with unsupervised learning. Simulations results validate our analysis and show dramatic gain of the proposed structure in terms of reducing training complexity.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.