Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Structure of Deep Neural Networks with a Priori Information in Wireless Tasks (1910.13728v2)

Published 30 Oct 2019 in cs.LG, cs.SY, eess.SY, and stat.ML

Abstract: Deep neural networks (DNNs) have been employed for designing wireless networks in many aspects, such as transceiver optimization, resource allocation, and information prediction. Existing works either use fully-connected DNN or the DNNs with specific structures that are designed in other domains. In this paper, we show that a priori information widely existed in wireless tasks is permutation invariant. For these tasks, we propose a DNN with special structure, where the weight matrices between layers of the DNN only consist of two smaller sub-matrices. By such way of parameter sharing, the number of model parameters reduces, giving rise to low sample and computational complexity for training a DNN. We take predictive resource allocation as an example to show how the designed DNN can be applied for learning the optimal policy with unsupervised learning. Simulations results validate our analysis and show dramatic gain of the proposed structure in terms of reducing training complexity.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)