Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Jointly optimal dereverberation and beamforming (1910.13707v1)

Published 30 Oct 2019 in cs.SD, cs.CL, and eess.AS

Abstract: We previously proposed an optimal (in the maximum likelihood sense) convolutional beamformer that can perform simultaneous denoising and dereverberation, and showed its superiority over the widely used cascade of a WPE dereverberation filter and a conventional MPDR beamformer. However, it has not been fully investigated which components in the convolutional beamformer yield such superiority. To this end, this paper presents a new derivation of the convolutional beamformer that allows us to factorize it into a WPE dereverberation filter, and a special type of a (non-convolutional) beamformer, referred to as a wMPDR beamformer, without loss of optimality. With experiments, we show that the superiority of the convolutional beamformer in fact comes from its wMPDR part.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.