Practical Repetition-Aware Grammar Compression (1910.13479v1)
Abstract: The goal of grammar compression is to construct a small sized context free grammar which uniquely generates the input text data. Among grammar compression methods, RePair is known for its good practical compression performance. MR-RePair was recently proposed as an improvement to RePair for constructing small-sized context free grammar for repetitive text data. However, a compact encoding scheme has not been discussed for MR-RePair. We propose a practical encoding method for MR-RePair and show its effectiveness through comparative experiments. Moreover, we extend MR-RePair to run-length context free grammar and design a novel variant for it called RL-MR-RePair. We experimentally demonstrate that a compression scheme consisting of RL-MR-RePair and the proposed encoding method show good performance on real repetitive datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.