Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Intelligent-Unrolling: Exploiting Regular Patterns in Irregular Applications (1910.13346v1)

Published 24 Oct 2019 in cs.DC, cs.PF, and cs.PL

Abstract: Modern optimizing compilers are able to exploit memory access or computation patterns to generate vectorization codes. However, such patterns in irregular applications are unknown until runtime due to the input dependence. Thus, either compiler's static optimization or profile-guided optimization based on specific inputs cannot predict the patterns for any common input, which leads to suboptimal code generation. To address this challenge, we develop Intelligent-Unroll, a framework to automatically optimize irregular applications with vectorization. Intelligent-Unroll allows the users to depict the computation task using \textit{code seed} with the memory access and computation patterns represented in \textit{feature table} and \textit{information-code tree}, and generates highly efficient codes. Furthermore, Intelligent-Unroll employs several novel optimization techniques to optimize reduction operations and gather/scatter instructions. We evaluate Intelligent-Unroll with sparse matrix-vector multiplication (SpMV) and graph applications. Experimental results show that Intelligent-Unroll is able to generate more efficient vectorization codes compared to the state-of-the-art implementations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube