Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Deep Physical Reservoir Computing Through Automatic Task Decomposition And Mapping (1910.13332v1)

Published 25 Oct 2019 in cs.LG, cs.ET, cs.NE, and eess.SP

Abstract: Photonic reservoir computing is a promising candidate for low-energy computing at high bandwidths. Despite recent successes, there are bounds to what one can achieve simply by making photonic reservoirs larger. Therefore, a switch from single-reservoir computing to multi-reservoir and even deep physical reservoir computing is desirable. Given that backpropagation can not be used directly to train multi-reservoir systems in our targeted setting, we propose an alternative approach that still uses its power to derive intermediate targets. In this work we report our findings on a conducted experiment to evaluate the general feasibility of our approach by training a network of 3 Echo State Networks to perform the well-known NARMA-10 task using targets derived through backpropagation. Our results indicate that our proposed method is well-suited to train multi-reservoir systems in a efficient way.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.